CSE 590 Data Science Fundamentals

DATA PREPARATION AND REDUCTION I

KLAUS MUELLER

COMPUTER SCIENCE DEPARTMENT STONY BROOK UNIVERSITY AND SUNY KOREA

Lecture	Торіс	Projects	
1	Intro, schedule, and logistics		
2	Data Science components and tasks		
3	Data types	Project #1 out	
4	Introduction to R, statistics foundations		
5	Introduction to D3, visual analytics		
6	Data preparation and reduction		
7	Data preparation and reduction	Project #1 due	
8	Similarity and distances	Project #2 out	
9	Similarity and distances		
10	Cluster analysis		
11	Cluster analysis		
12	Pattern miming	Project #2 due	
13	Pattern mining		
14	Outlier analysis		
15	Outlier analysis	Final Project proposal due	
16	Classifiers		
17	Midterm		
18	Classifiers		
19	Optimization and model fitting		
20	Optimization and model fitting		
21	Causal modeling		
22	Streaming data	Final Project preliminary report due	
23	Text data		
24	Time series data		
25	Graph data		
26	Scalability and data engineering		
27	Data journalism		
	Final project presentation	Final Project slides and final report due	

DATA IN THE REAL WORLD IS DIRTY

Incomplete

- can lack attribute values
- can lack certain attributes of interest
- may contain only aggregate data

Noisy

has errors or outliers

Inconsistent

may have discrepancies in codes or names

No quality data, no quality mining results!

DATA PREPARATION TASKS

Data cleaning

- fill in missing values
- smooth noisy data
- identify or remove outliers
- resolve inconsistencies

Data reduction

- **obtain reduced volume**, but get same/similar analytical results
- data discretization (for numerical data)
- data aggregation (summarization)
- data transformation/normalization
- dimensionality reduction
- data compression/generalization

DATA INTEGRATION

Data integration/fusion

- multiple databases
- data cubes
- files
- notes

Produces new opportunities

- can gain more comprehensive insight (value > sum of parts)
- but watch out for synonymy and polysemy
- attributes with different labels may have the same meaning
 - "comical" and "hilarious"
- attributes with the same label may have different meaning
 - "jaguar" can be a cat or a car

MISSING VALUES

Data is not always available

 e. g, many tuples have no recorded value for several attributes, such as customer income in sales data

Missing data may be due to

- equipment malfunction
- inconsistent with other recorded data and thus deleted
- data not entered due to misunderstanding
- certain data may not be considered important at the time of entry
- other reasons

MISSING VALUES – WHAT TO DO

Ignore the tuple

usually done when class label is missing

Fill in the missing value manually

can be tedious and even infeasible

Use a global constant to fill in the missing value:

• e.g., "unknown" or a new class

Use the attribute mean to fill in the missing value

better: only use samples of the same class for better fit

Use the most probable value to fill in the missing value:

inference-based: regression, Bayesian formula, decision tree

MISSING DATA – EXAMPLE

Fill missing values using aggregate functions

- average
- probabilistic estimates on global value distribution

Age	Income	Team	Gender
23	24,200	Red Sox	Μ
39	?1	Yankees	F
45	45,390	? 2	F

- ?1: put the average income, or put the most probable income based on the fact that the person is 39 years old
- ?2: put the most frequent team

NOISY DATA

Noise = Random error in a measured variable

- faulty data collection instruments
- data entry problems
- data transmission problems
- technology limitation
- inconsistency in naming convention

Other data problems which require data cleaning

- duplicate records
- incomplete data
- inconsistent data

NOISY DATA – WHAT TO DO

Binning method

- first sort data and partition into (equi-depth) bins
- then smooth by bin means, bin median, bin boundaries, etc.

Clustering

detect and remove outliers

Semi-automated method

- combined computer and human inspection
- detect suspicious values and check manually (need visualization)

Regression

 smooth by fitting the data to a regression function

Example For Binning

Sorted data by price (\$): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

Partition into (equi-depth) bins:

- Bin 1: 4, 8, 9, 15
- Bin 2: 21, 21, 24, 25
- Bin 3: 26, 28, 29, 34

Smoothing by bin means:

- Bin 1: 9, 9, 9, 9
- Bin 2: 23, 23, 23, 23
- Bin 3: 29, 29, 29, 29

Smoothing by bin boundaries:

- Bin 1: 4, 4, 4, 15
- Bin 2: 21, 21, 25, 25
- Bin 3: 26, 26, 26, 34

NOISE REMOVAL

A word of caution

- an outlier may not be noise
- it may be an anomaly that is very valuable
- look for noise statistics
- outlier from the noise statistics may be important data

RESOLVE INCONSISTENCIES

Inconsistencies in naming conventions or data codes

e.g., 2/5/2002 could be 2 May 2002 or 5 Feb 2002

Redundant data

duplicate tuples, which were received twice should be removed

DATA TRANSFORMATION

Can help reduce influence of extreme values

Variance reduction:

- often very useful when dealing with skewed data (e.g. incomes)
- square root, reciprocal, logarithm, raising to a power
- Logit: transforms probabilities from 0 to 1 to real-line

$$logit(p) = log(\frac{p}{1-p})$$

DATA NORMALIZATION

Sometimes we like to have all variables on the same scale

min-max normalization

$$v' = \frac{v - \min}{\max - \min}$$

standardization / z-score normalization

$$v' = \frac{v - \overline{v}}{\sigma_v}$$

standardization is less sensitive to outliers

THE NEED FOR DATA REDUCTION

Purpose

- reduce the data to a size that can be feasibly stored
- reduce the data so a mining algorithm can be feasibly run

Alternatives

- buy more storage
- buy more computers or faster ones
- develop more efficient algorithms (look beyond O-notation)

In practice, all of this is happening at the same time

- but the growth of data and complexities is faster
- and so data reduction is important

DATA REDUCTION

Sampling

- random, stratified, Monte Carlo, importance
- redundancy sampling
- reservoir sampling for streaming data

The CURE algorithm

well-scattered points

Data summarization

- binning (already discussed)
- clustering (see future a lecture)
- dimension reduction (see next lecture)

SAMPLING

The goal

pick a <u>representative</u> subset of the data

Random sampling

- pick sample points at random
- will work if the points are distributed uniformly
- this is usually not the case
- outliers will likely be missed
- so the sample will not be representative

ADAPTIVE SAMPLING

Pick the samples according to some knowledge of the data distribution

- create a binning of some sort (outliers will form bins as well)
- also called *strata* (stratified sampling)
- the size of each bin represents its percentage in the population
- it guides the number of samples bigger bins get more samples

sampling rate ~ bin height

sampling rate ~ cluster size

IMPORTANCE SAMPLING

Estimate the statistical properties of a distribution

- then sample the distribution according to this distribution
- define the importance

sample in high slopes

sample according to a user-defined function

THE INVERSION METHOD

Easy way to making your own sampling algorithm

 find the cumulative distribution function (CDF) of your desired probability density function (PDF)

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

 if f(x) has an inverse then we can use the inversion method to create a sampling method

- generate a random u-value between [0.1] and look up the x-value
- region with higher f(x) have a steeper CDF and get sampled more

INVERSION METHOD EXAMPLE

 $f(x) = \lambda e^{-\lambda x}$

Redundancy Sampling

Eliminate redundant attributes

- eliminate correlated attributes
 - km vs. miles
 - $a + b + c = d \rightarrow can eliminate 'c' (or 'a' or 'b')$

Eliminate redundant data

- cluster the data with small ranges
- only keep the cluster centroids
- store size of clusters along to keep importance

Reservoir Sampling

Probabilities

- k/i for the i^{th} sample to go into the reservoir
- $1/k \cdot k/i = 1/i$ for the *j*th reservoir element to be replaced
- k/n for all elements in the reservoir after n has been reached
- can be shown via induction

A good algorithm to use for streaming data when *n* is growing

SAMPLING OF WELL-SCATTERED POINTS

Used in the CURE high-dimensional clustering algorithm

 S. Guha, R. Rajeev, and K. Shim. "CURE: an efficient clustering algorithm for large databases." ACM SIGMOD, 27(2): 73-84, 1998

Algorithm

- initialize the point set S to empty
- pick the point farthest from the mean as the first point for S
- then iteratively pick points that are furthest from the points in S collected so far

Complexity is $O(m \cdot n^2)$

- *n* is the total number of points, *m* is the number of desired points
- can find arbitrarily shaped clusters and preserve outliers, too
- need some good data structures to run efficiently: kd-tree, heap