


Lecture Topic Projects 
1 Intro, schedule, and logistics    
2 Data Science components and tasks   
3 Data types Project #1 out  
4 Introduction to R, statistics foundations   
5 Introduction to D3, visual analytics   
6 Data preparation and reduction    
7 Data preparation and reduction  Project #1 due 
8 Similarity and distances Project #2 out 
9 Similarity and distances   

10 Cluster analysis   
11 Cluster analysis   
12 Pattern miming  Project #2 due 
13 Pattern mining   
14 Outlier analysis   
15 Outlier analysis Final Project proposal due 
16 Classifiers   
17 Midterm   
18 Classifiers   
19 Optimization and model fitting   
20 Optimization and model fitting   
21 Causal modeling   
22 Streaming data Final Project preliminary report due 
23 Text data   
24 Time series data   
25 Graph data   
26 Scalability and data engineering   
27 Data journalism   
  Final project presentation  Final Project slides and final report due 



Incomplete  

 can lack attribute values 

 can lack certain attributes of interest 

 may contain only aggregate data 

 

Noisy 

 has errors or outliers 

 

Inconsistent 

 may have discrepancies in codes or names 

 

No quality data, no quality mining results! 

 



Data cleaning 

 fill in missing values 

 smooth noisy data 

 identify or remove outliers 

 resolve inconsistencies 

 

Data reduction 

 obtain reduced volume, but get same/similar analytical results 

 data discretization (for numerical data) 

 data aggregation (summarization) 

 data transformation/normalization 

 dimensionality reduction 

 data compression/generalization 

 

 

 



Data integration/fusion 
 multiple databases 

 data cubes 

 files 

 notes 

 

Produces new opportunities  
 can gain more comprehensive insight (value > sum of parts) 

 but watch out for synonymy and polysemy 

 attributes with different labels may have the same meaning 

– “comical” and “hilarious” 

 attributes with the same label may have different meaning  

– “jaguar” can be a cat or a car 

 

 



Data is not always available 

 e. g, many tuples have no recorded value for several attributes, 

such as customer income in sales data 

 

Missing data may be due to  

 equipment malfunction 

 inconsistent with other recorded data and thus deleted 

 data not entered due to misunderstanding 

 certain data may not be considered important at the time of entry 

 other reasons 



Ignore the tuple 
 usually done when class label is missing 

 

Fill in the missing value manually 
 can be tedious and even infeasible 

 

Use a global constant to fill in the missing value:  
 e.g., “unknown” or a new class  

 

Use the attribute mean to fill in the missing value 
 better: only use samples of the same class for better fit 

 

Use the most probable value to fill in the missing value:  
 inference-based: regression, Bayesian formula, decision tree 

 



Fill missing values using aggregate functions  

 average  

 probabilistic estimates on global value distribution 

 

 

 

 

 

 

 ?1: put the average income, or put the most probable income 

based on the fact that the person is 39 years old 

 ?2: put the most frequent team 

 

 

Age Income Team Gender 

23 24,200 Red Sox M 

39 ?1 Yankees F 

45 45,390 ?2 F 



Noise = Random error in a measured                                      

variable 

 faulty data collection instruments 

 data entry problems 

 data transmission problems 

 technology limitation 

 inconsistency in naming convention  

 

Other data problems which require data cleaning 

 duplicate records 

 incomplete data 

 inconsistent data 

 



Binning method 
 first sort data and partition into (equi-depth) bins 

 then smooth by bin means,  bin median, bin boundaries, etc. 

 

Clustering 
 detect and remove outliers 

 

Semi-automated method 
 combined computer and human inspection 

 detect suspicious values and check manually (need visualization) 

 

Regression 
 smooth by fitting the data to a                                                                       

regression function 

 



Sorted data by price ($): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34 

 

Partition into (equi-depth) bins: 
 Bin 1: 4, 8, 9, 15 

 Bin 2: 21, 21, 24, 25 

 Bin 3: 26, 28, 29, 34 

 

Smoothing by bin means: 
 Bin 1: 9, 9, 9, 9 

 Bin 2: 23, 23, 23, 23 

 Bin 3: 29, 29, 29, 29 

 

Smoothing by bin boundaries: 
 Bin 1: 4, 4, 4, 15 

 Bin 2: 21, 21, 25, 25 

 Bin 3: 26, 26, 26, 34 



A word of caution 

 an outlier may not be noise 

 it may be an anomaly that is very valuable 

 look for noise statistics 

 outlier from the noise statistics may be important data  



Inconsistencies in naming conventions or data codes  

 e.g., 2/5/2002 could be 2 May 2002 or 5 Feb 2002 

 

Redundant data 

 duplicate tuples, which were received twice should be removed 

 



Can help reduce influence of extreme values 

 

Variance reduction: 

 often very useful when dealing with skewed data (e.g. incomes)  

 square root, reciprocal, logarithm, raising to a power 

 Logit: transforms probabilities from 0 to 1 to real-line  

 

 

 

 

logit( p)  log(
p

1 p
)



Sometimes we like to have all variables on the same scale 

 min-max normalization 

 

𝑣′ =
𝑣 −𝑚𝑖𝑛

𝑚𝑎𝑥 −𝑚𝑖𝑛
 

 

 standardization / z-score normalization 

 

𝑣′ =
𝑣 − 𝑣

𝜎𝑣
 

 

 standardization is less sensitive to outliers 



Purpose 

 reduce the data to a size that can be feasibly stored  

 reduce the data so a mining algorithm can be feasibly run 

 

Alternatives  

 buy more storage 

 buy more computers or faster ones 

 develop more efficient algorithms (look beyond O-notation) 

 

In practice, all of this is happening at the same time 

 but the growth of data and complexities is faster 

 and so data reduction is important  



Sampling 

 random, stratified, Monte Carlo, importance 

 redundancy sampling 

 reservoir sampling for streaming data 

 

The CURE algorithm  

 well-scattered points 

 

Data summarization 

 binning (already discussed) 

 clustering (see future a lecture) 

 dimension reduction (see next lecture) 



The goal 

 pick a representative subset of the data 

 

Random sampling 

 pick sample points at random 

 will work if the points are distributed                                               

uniformly 

 this is usually not the case 

 outliers will likely be missed 

 so the sample will not be representative  

 

 

 



Pick the samples according to some knowledge of the data 

distribution 

 create a binning of some sort (outliers will form bins as well) 

 also called strata (stratified sampling) 

 the size of each bin represents its percentage in the population 

 it guides the number of samples – bigger bins get more samples 

 

sampling rate ~ bin height sampling rate ~ cluster size 



Estimate the statistical properties of a distribution 

 then sample the distribution according to this distribution 

 define the importance  

sample in high slopes 

sample according to a user-defined function sample in high densities 



Easy way to making your own sampling algorithm 

 find the cumulative distribution function (CDF) of your desired 

probability density function (PDF) 

𝐹 𝑥 =  𝑓 𝑡 𝑑𝑡
𝑥

−∞

 

 if f(x) has an inverse then we can use the inversion method to 

create a sampling method 

 

 

 

 

 generate a random u-value between [0.1] and look up the x-value 

 region with higher f(x) have a steeper CDF and get sampled more  

 

 



u 



Eliminate redundant attributes 

 eliminate correlated attributes 

• km vs. miles 

• a + b + c = d  can eliminate ‘c’ (or ‘a’ or ‘b’ 

 

Eliminate redundant data 

 cluster the data with small ranges 

 only keep the cluster centroids 

 store size of clusters along to keep importance 



Probabilities 

 k/i for the ith sample to go into the reservoir 

 1/k · k/i = 1/i for the jth reservoir element to be replaced 

 k/n for all elements in the reservoir after n has been reached 

 can be shown via induction  

A good algorithm to use for streaming data when n is growing  



Used in the CURE high-dimensional clustering algorithm 
 S. Guha, R. Rajeev, and K. Shim. "CURE: an efficient clustering 

algorithm for large databases." ACM SIGMOD, 27(2): 73-84, 1998 

 

Algorithm 
 initialize the point set S to empty 

 pick the point farthest from the mean as the first point for S  

 then iteratively pick points that are furthest from the points in S 
collected so far 

 

Complexity is O(m·n2) 
 n is the total number of points, m is the number of desired points 

 can find arbitrarily shaped clusters and preserve outliers, too  

 need some good data structures to run efficiently: kd-tree, heap  


