

Lecture Topic Projects
1 Intro, schedule, and logistics
2 Data Science components and tasks
3 Data types Project #1 out
4 Introduction to R, statistics foundations
5 Introduction to D3, visual analytics
6 Data preparation and reduction
7 Data preparation and reduction Project #1 due
8 Similarity and distances Project #2 out
9 Similarity and distances

10 Cluster analysis
11 Cluster analysis
12 Pattern miming Project #2 due
13 Pattern mining
14 Outlier analysis
15 Outlier analysis Final Project proposal due
16 Classifiers
17 Midterm
18 Classifiers
19 Optimization and model fitting
20 Optimization and model fitting
21 Causal modeling
22 Streaming data Final Project preliminary report due
23 Text data
24 Time series data
25 Graph data
26 Scalability and data engineering
27 Data journalism
 Final project presentation Final Project slides and final report due

Incomplete

 can lack attribute values

 can lack certain attributes of interest

 may contain only aggregate data

Noisy

 has errors or outliers

Inconsistent

 may have discrepancies in codes or names

No quality data, no quality mining results!

Data cleaning

 fill in missing values

 smooth noisy data

 identify or remove outliers

 resolve inconsistencies

Data reduction

 obtain reduced volume, but get same/similar analytical results

 data discretization (for numerical data)

 data aggregation (summarization)

 data transformation/normalization

 dimensionality reduction

 data compression/generalization

Data integration/fusion
 multiple databases

 data cubes

 files

 notes

Produces new opportunities
 can gain more comprehensive insight (value > sum of parts)

 but watch out for synonymy and polysemy

 attributes with different labels may have the same meaning

– “comical” and “hilarious”

 attributes with the same label may have different meaning

– “jaguar” can be a cat or a car

Data is not always available

 e. g, many tuples have no recorded value for several attributes,

such as customer income in sales data

Missing data may be due to

 equipment malfunction

 inconsistent with other recorded data and thus deleted

 data not entered due to misunderstanding

 certain data may not be considered important at the time of entry

 other reasons

Ignore the tuple
 usually done when class label is missing

Fill in the missing value manually
 can be tedious and even infeasible

Use a global constant to fill in the missing value:
 e.g., “unknown” or a new class

Use the attribute mean to fill in the missing value
 better: only use samples of the same class for better fit

Use the most probable value to fill in the missing value:
 inference-based: regression, Bayesian formula, decision tree

Fill missing values using aggregate functions

 average

 probabilistic estimates on global value distribution

 ?1: put the average income, or put the most probable income

based on the fact that the person is 39 years old

 ?2: put the most frequent team

Age Income Team Gender

23 24,200 Red Sox M

39 ?1 Yankees F

45 45,390 ?2 F

Noise = Random error in a measured

variable

 faulty data collection instruments

 data entry problems

 data transmission problems

 technology limitation

 inconsistency in naming convention

Other data problems which require data cleaning

 duplicate records

 incomplete data

 inconsistent data

Binning method
 first sort data and partition into (equi-depth) bins

 then smooth by bin means, bin median, bin boundaries, etc.

Clustering
 detect and remove outliers

Semi-automated method
 combined computer and human inspection

 detect suspicious values and check manually (need visualization)

Regression
 smooth by fitting the data to a

regression function

Sorted data by price ($): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

Partition into (equi-depth) bins:
 Bin 1: 4, 8, 9, 15

 Bin 2: 21, 21, 24, 25

 Bin 3: 26, 28, 29, 34

Smoothing by bin means:
 Bin 1: 9, 9, 9, 9

 Bin 2: 23, 23, 23, 23

 Bin 3: 29, 29, 29, 29

Smoothing by bin boundaries:
 Bin 1: 4, 4, 4, 15

 Bin 2: 21, 21, 25, 25

 Bin 3: 26, 26, 26, 34

A word of caution

 an outlier may not be noise

 it may be an anomaly that is very valuable

 look for noise statistics

 outlier from the noise statistics may be important data

Inconsistencies in naming conventions or data codes

 e.g., 2/5/2002 could be 2 May 2002 or 5 Feb 2002

Redundant data

 duplicate tuples, which were received twice should be removed

Can help reduce influence of extreme values

Variance reduction:

 often very useful when dealing with skewed data (e.g. incomes)

 square root, reciprocal, logarithm, raising to a power

 Logit: transforms probabilities from 0 to 1 to real-line

logit(p) log(
p

1 p
)

Sometimes we like to have all variables on the same scale

 min-max normalization

𝑣′ =
𝑣 −𝑚𝑖𝑛

𝑚𝑎𝑥 −𝑚𝑖𝑛

 standardization / z-score normalization

𝑣′ =
𝑣 − 𝑣

𝜎𝑣

 standardization is less sensitive to outliers

Purpose

 reduce the data to a size that can be feasibly stored

 reduce the data so a mining algorithm can be feasibly run

Alternatives

 buy more storage

 buy more computers or faster ones

 develop more efficient algorithms (look beyond O-notation)

In practice, all of this is happening at the same time

 but the growth of data and complexities is faster

 and so data reduction is important

Sampling

 random, stratified, Monte Carlo, importance

 redundancy sampling

 reservoir sampling for streaming data

The CURE algorithm

 well-scattered points

Data summarization

 binning (already discussed)

 clustering (see future a lecture)

 dimension reduction (see next lecture)

The goal

 pick a representative subset of the data

Random sampling

 pick sample points at random

 will work if the points are distributed

uniformly

 this is usually not the case

 outliers will likely be missed

 so the sample will not be representative

Pick the samples according to some knowledge of the data

distribution

 create a binning of some sort (outliers will form bins as well)

 also called strata (stratified sampling)

 the size of each bin represents its percentage in the population

 it guides the number of samples – bigger bins get more samples

sampling rate ~ bin height sampling rate ~ cluster size

Estimate the statistical properties of a distribution

 then sample the distribution according to this distribution

 define the importance

sample in high slopes

sample according to a user-defined function sample in high densities

Easy way to making your own sampling algorithm

 find the cumulative distribution function (CDF) of your desired

probability density function (PDF)

𝐹 𝑥 = 𝑓 𝑡 𝑑𝑡
𝑥

−∞

 if f(x) has an inverse then we can use the inversion method to

create a sampling method

 generate a random u-value between [0.1] and look up the x-value

 region with higher f(x) have a steeper CDF and get sampled more

u

Eliminate redundant attributes

 eliminate correlated attributes

• km vs. miles

• a + b + c = d can eliminate ‘c’ (or ‘a’ or ‘b’

Eliminate redundant data

 cluster the data with small ranges

 only keep the cluster centroids

 store size of clusters along to keep importance

Probabilities

 k/i for the ith sample to go into the reservoir

 1/k · k/i = 1/i for the jth reservoir element to be replaced

 k/n for all elements in the reservoir after n has been reached

 can be shown via induction

A good algorithm to use for streaming data when n is growing

Used in the CURE high-dimensional clustering algorithm
 S. Guha, R. Rajeev, and K. Shim. "CURE: an efficient clustering

algorithm for large databases." ACM SIGMOD, 27(2): 73-84, 1998

Algorithm
 initialize the point set S to empty

 pick the point farthest from the mean as the first point for S

 then iteratively pick points that are furthest from the points in S
collected so far

Complexity is O(m·n2)
 n is the total number of points, m is the number of desired points

 can find arbitrarily shaped clusters and preserve outliers, too

 need some good data structures to run efficiently: kd-tree, heap

